Cardiorespiratory coordination during exercise recovery: a novel measure for health assessment
*Corresponding author: Lluc Montull llucmontull@gmail.com
Cite this article
Abenza, Ó., Montull, L., Javierre, C. & Balagué, N. (2024). Cardiorespiratory coordination during exercise recovery: a novel measure for health assessment. Apunts Educación Física y Deportes, 159, 1-9. https://doi.org/10.5672/apunts.2014-0983.es.(2025/1).159.01155Visites
References
[1] Bahr, R., & Sejersted, O. M. (1991). Effect of intensity of exercise on excess postexercise O2 consumption. Metabolism - Clinical and Experimental, 40(8), 836–841. doi.org/10.1016/0026-0495(91)90012-L
[2] Balady, G. J., Arena, R., Sietsema, K., Myers, J., Coke, L., Fletcher, G. F., Forman, D., Franklin, B., Guazzi, M., Gulati, M., Keteyian, S. J., Lavie, C. J., MacKo, R., Mancini, D., & Milani, R. V. (2010). Clinician’s Guide to Cardiopulmonary Exercise Testing in Adults. Circulation, 122(2), 191–225. doi.org/10.1161/CIR.0B013E3181E52E69
[3] Balagué, N., González, J., Javierre, C., Hristovski, R., Aragonés, D., Álamo, J., Niño, O., & Ventura, J. L. (2016). Cardiorespiratory coordination after training and detraining. A principal component analysis approach. Frontiers in Physiology, 7(35). doi.org/10.3389/fphys.2016.00035
[4] Balagué, N., Hristovski, R., Almarcha, M., Garcia-Retortillo, S., & Ivanov, P. C. (2020). Network Physiology of Exercise: Vision and Perspectives. Frontiers in Physiology, 11, 611550. doi.org/10.3389/fphys.2020.611550
[5] Bartels, R., Prodel, E., Laterza, M. C., de Lima, J. R. P., & Peçanha, T. (2018). Heart rate recovery fast-to-slow phase transition: Influence of physical fitness and exercise intensity. Annals of Noninvasive Electrocardiology, 23(3), 1–7. doi.org/10.1111/anec.12521
[6] Binder, R. K., Wonisch, M., Corra, U., Cohen-Solal, A., Vanhees, L., Saner, H., & Schmid, J. P. (2008). Methodological approach to the first and second lactate threshold in incremental cardiopulmonary exercise testing. In European Journal of Preventive Cardiology (Vol. 15, Issue 6, pp. 726–734). doi.org/10.1097/HJR.0b013e328304fed4
[7] Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Routledge. doi.org/10.4324/9780203771587
[8] Denis, D. J. (2016). Applied Univariate, Bivariate, And Multivariate Statistics. Wiley.
[9] Esquius, L., Garcia-Retortillo, S., Balagué, N., Hristovski, R., & Javierre, C. (2022). Physiological-and performance-related effects of acute olive oil supplementation at moderate exercise intensity. Journal of the International Society of Sports Nutrition, 16(1). doi.org/10.1186/s12970-019-0279-6
[10] Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. doi.org/10.3758/bf03193146
[11] Garcia-Retortillo, S., Abenza, Ó., Vasileva, F., Balagué, N., Hristovski, R., Wells, A., Fanning, J., Kattula, J., & Ivanov, P. C. (2024). Age-related breakdown in networks of inter-muscular coordination. GeroScience, 1–25. doi.org/10.1007/s11357-024-01331-9
[12] Garcia-Retortillo, S., Gacto, M., O’Leary, T. J., Noon, M., Hristovski, R., Balagué, N., & Morris, M. G. (2019). Cardiorespiratory coordination reveals training-specific physiological adaptations. European Journal of Applied Physiology, 119(8), 1701–1709. doi.org/10.1007/s00421-019-04160-3
[13] Garcia-Retortillo, S., & Ivanov, P. C. (2022). Inter-muscular networks of synchronous muscle fiber activation. Frontiers in Network Physiology, 2, 1059793. doi.org/10.3389/fnetp.2022.1059793
[14] Garcia-Retortillo, S., Javierre, C., Hristovski, R., Ventura, J. L., & Balagué, N. (2017). Cardiorespiratory coordination in repeated maximal exercise. Frontiers in Physiology, 8(387). doi.org/10.3389/fphys.2017.00387
[15] Garcia-Retortillo, S., Javierre, C., Hristovski, R., Ventura, J. L., & Balagué, N. (2019). Principal component analysis as a novel approach for cardiorespiratory exercise testing evaluation. Physiological Measurement, 40(8), 1–8. doi.org/10.1088/1361-6579/AB2CA0
[16] Garcia-Retortillo, S., Rizzo, R., Wang, J. W. J. L., Sitges, C., & Ivanov, P. C. (2020). Universal spectral profile and dynamic evolution of muscle activation: a hallmark of muscle type and physiological state. Journal of Applied Physiology, 129(3), 419–441. doi.org/10.1152/japplphysiol.00385.2020
[17] Gunnar Borg. (1998). Borg’s perceived exertion and pain scales. Human Kinetics.
[18] Haken, H. (2000). Information and Self-Organization. A Macroscopic Approach to Complex Systems. Springer. doi.org/10.3390/e19010018
[19] Jolliffe, I. (2002). Principal Component Analysis. In Springer. Springer-Verlag. doi.org/10.1007/B98835
[20] Kairiukstiene, Z., Poderiene, K., Velicka, D., Trinkunas, E., & Poderys, J. (2020). Analysis of ECG parameter dynamics which define fatigue and the functional state of athletes. Medicina Dello Sport, 73(1), 32–41. doi.org/10.23736/S0025-7826.20.03515-2
[21] Krivoshchekov, S. G., Uryumtsev, D. Y., Gultyaeva, V. V, & Zinchenko, M. I. (2021). Cardiorespiratory Coordination in Acute Hypoxia in Runners. Human Physiology, 47(4), 80–90. doi.org/10.1134/S0362119721030087
[22] Meglen, R. R. (1991). Examining large databases: A chemometric approach using principal component analysis. Journal of Chemometrics, 5(3), 163–179. doi.org/10.1002/CEM.1180050305
[23] Molkov, Y., Zoccal, D., Baekey, D., Abdala, A., Machado, B., Dick, T., Paton, J., & Rybak, I. (2014). Physiological and pathophysiological interactions between the respiratory central pattern generator and the sympathetic nervous system. Progress in Brain Research, 121(1), 1–23. doi.org/10.1016/B978-0-444-63488-7.00001-X
[24] Montull, L., Abenza, O., Hristovski, R., & Balagué, N. (2023). Hysteresis Area of Psychobiological Variables. A New Non-Invasive Biomarker of Effort Accumulation? Apunts Educación Física y Deportes, 152, 55–61. doi.org/10.5672/apunts.2014-0983.es.(2023/2).152.06
[25] Montull, L., Vázquez, P., Hristovski, R., & Balagué, N. (2020). Hysteresis behaviour of psychobiological variables during exercise. Psychology of Sport and Exercise, 48(August 2019), 101647. doi.org/10.1016/j.psychsport.2020.101647
[26] Naudts, J. (2005). Boltzmann entropy and the microcanonical ensemble. Europhysics Letters, 69(5), 719–724. doi.org/10.1209/epl/i2004-10413-1
[27] Oviedo, G. R., Garcia-Retortillo, S., Carbó-Carreté, M., Guerra-Balic, M., Balagué, N., Javierre, C., & Guàrdia-Olmos, J. (2021). Cardiorespiratory Coordination During Exercise in Adults With Down Syndrome. Frontiers in Physiology, 12. doi.org/10.3389/FPHYS.2021.704062
[28] Pocock, G., Richards, C. D., & Richards, D. A. (2013). Human Physiology. Springer Science & Business Media.
[29] Qammar, N. W., Orinaitė, U., Šiaučiūnaitė, V., Vainoras, A., Šakalytė, G., & Ragulskis, M. (2022). The Complexity of the Arterial Blood Pressure Regulation during the Stress Test. Diagnostics, 12(5). doi.org/10.3390/diagnostics12051256
[30] Romero, S. A., Minson, C. T., & Halliwill, X. R. (2017). The cardiovascular system after exercise. Journal of Applied Physiology, 122(4), 925–932. doi.org/10.1152/japplphysiol.00802.2016
[31] Seely, A. J. E., & Macklem, P. (2012). Fractal variability: An emergent property of complex dissipative systems. Chaos, 22(1), 19–22. doi.org/10.1063/1.3675622
[32] Tenenbaum, J. B., De Silva, V., & Langford, J. C. (2000). A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science, 290(5500), 2319–2323. doi.org/10.1126/SCIENCE.290.5500.2319
[33] Vázquez, P., Hristovski, R., & Balagué, N. (2016). The path to exhaustion: Time-variability properties of coordinative variables during continuous exercise. Frontiers in Physiology, 7, 37. doi.org/10.3389/fphys.2016.00037
[34] Velicka, D., Kairiukstiene, Z., Poderiene, K., Vainoras, A., & Poderys, J. (2019). Interaction between cardiac functional indices during incremental exercise test reveals the peculiarities of adaptation to exercising. Medicina (Lithuania), 55(7), 1–9. doi.org/10.3390/medicina55070314
[35] Zebrowska, M., Garcia-Retortillo, S., Sikorski, K., Balagué, N., Hristovski, R., Casimiro, J., & Petelczyc, M. (2020). Decreased coupling among respiratory variables with effort accumulation. Europhysics Letters, 132(2), 1–7. doi.org/10.1209/0295-5075/132/28001
ISSN: 2014-0983
Received: 26, April 2024
Accepted: 17, July 2024
Published: 1, January 2025
Editor: © Generalitat de Catalunya Departament de la Presidència Institut Nacional d’Educació Física de Catalunya (INEFC)
© Copyright Generalitat de Catalunya (INEFC). This article is available from url https://www.revista-apunts.com/. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en