Coordinació cardiorespiratòria durant la recuperació de l’exercici: una mesura nova per avaluar la salut
*Correspondència: Lluc Montull llucmontull@gmail.com
Citació
Abenza, Ó., Montull, L., Javierre, C. & Balagué, N. (2024). Cardiorespiratory coordination during exercise recovery: a novel measure for health assessment. Apunts Educación Física y Deportes, 159, 1-9. https://doi.org/10.5672/apunts.2014-0983.es.(2025/1).159.0192Visites
Referències
[1] Bahr, R., & Sejersted, O. M. (1991). Effect of intensity of exercise on excess postexercise O2 consumption. Metabolism - Clinical and Experimental, 40(8), 836–841. doi.org/10.1016/0026-0495(91)90012-L
[2] Balady, G. J., Arena, R., Sietsema, K., Myers, J., Coke, L., Fletcher, G. F., Forman, D., Franklin, B., Guazzi, M., Gulati, M., Keteyian, S. J., Lavie, C. J., MacKo, R., Mancini, D., & Milani, R. V. (2010). Clinician’s Guide to Cardiopulmonary Exercise Testing in Adults. Circulation, 122(2), 191–225. doi.org/10.1161/CIR.0B013E3181E52E69
[3] Balagué, N., González, J., Javierre, C., Hristovski, R., Aragonés, D., Álamo, J., Niño, O., & Ventura, J. L. (2016). Cardiorespiratory coordination after training and detraining. A principal component analysis approach. Frontiers in Physiology, 7(35). doi.org/10.3389/fphys.2016.00035
[4] Balagué, N., Hristovski, R., Almarcha, M., Garcia-Retortillo, S., & Ivanov, P. C. (2020). Network Physiology of Exercise: Vision and Perspectives. Frontiers in Physiology, 11, 611550. doi.org/10.3389/fphys.2020.611550
[5] Bartels, R., Prodel, E., Laterza, M. C., de Lima, J. R. P., & Peçanha, T. (2018). Heart rate recovery fast-to-slow phase transition: Influence of physical fitness and exercise intensity. Annals of Noninvasive Electrocardiology, 23(3), 1–7. doi.org/10.1111/anec.12521
[6] Binder, R. K., Wonisch, M., Corra, U., Cohen-Solal, A., Vanhees, L., Saner, H., & Schmid, J. P. (2008). Methodological approach to the first and second lactate threshold in incremental cardiopulmonary exercise testing. In European Journal of Preventive Cardiology (Vol. 15, Issue 6, pp. 726–734). doi.org/10.1097/HJR.0b013e328304fed4
[7] Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Routledge. doi.org/10.4324/9780203771587
[8] Denis, D. J. (2016). Applied Univariate, Bivariate, And Multivariate Statistics. Wiley.
[9] Esquius, L., Garcia-Retortillo, S., Balagué, N., Hristovski, R., & Javierre, C. (2022). Physiological-and performance-related effects of acute olive oil supplementation at moderate exercise intensity. Journal of the International Society of Sports Nutrition, 16(1). doi.org/10.1186/s12970-019-0279-6
[10] Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. doi.org/10.3758/bf03193146
[11] Garcia-Retortillo, S., Abenza, Ó., Vasileva, F., Balagué, N., Hristovski, R., Wells, A., Fanning, J., Kattula, J., & Ivanov, P. C. (2024). Age-related breakdown in networks of inter-muscular coordination. GeroScience, 1–25. doi.org/10.1007/s11357-024-01331-9
[12] Garcia-Retortillo, S., Gacto, M., O’Leary, T. J., Noon, M., Hristovski, R., Balagué, N., & Morris, M. G. (2019). Cardiorespiratory coordination reveals training-specific physiological adaptations. European Journal of Applied Physiology, 119(8), 1701–1709. doi.org/10.1007/s00421-019-04160-3
[13] Garcia-Retortillo, S., & Ivanov, P. C. (2022). Inter-muscular networks of synchronous muscle fiber activation. Frontiers in Network Physiology, 2, 1059793. doi.org/10.3389/fnetp.2022.1059793
[14] Garcia-Retortillo, S., Javierre, C., Hristovski, R., Ventura, J. L., & Balagué, N. (2017). Cardiorespiratory coordination in repeated maximal exercise. Frontiers in Physiology, 8(387). doi.org/10.3389/fphys.2017.00387
[15] Garcia-Retortillo, S., Javierre, C., Hristovski, R., Ventura, J. L., & Balagué, N. (2019). Principal component analysis as a novel approach for cardiorespiratory exercise testing evaluation. Physiological Measurement, 40(8), 1–8. doi.org/10.1088/1361-6579/AB2CA0
[16] Garcia-Retortillo, S., Rizzo, R., Wang, J. W. J. L., Sitges, C., & Ivanov, P. C. (2020). Universal spectral profile and dynamic evolution of muscle activation: a hallmark of muscle type and physiological state. Journal of Applied Physiology, 129(3), 419–441. doi.org/10.1152/japplphysiol.00385.2020
[17] Gunnar Borg. (1998). Borg’s perceived exertion and pain scales. Human Kinetics.
[18] Haken, H. (2000). Information and Self-Organization. A Macroscopic Approach to Complex Systems. Springer. doi.org/10.3390/e19010018
[19] Jolliffe, I. (2002). Principal Component Analysis. In Springer. Springer-Verlag. doi.org/10.1007/B98835
[20] Kairiukstiene, Z., Poderiene, K., Velicka, D., Trinkunas, E., & Poderys, J. (2020). Analysis of ECG parameter dynamics which define fatigue and the functional state of athletes. Medicina Dello Sport, 73(1), 32–41. doi.org/10.23736/S0025-7826.20.03515-2
[21] Krivoshchekov, S. G., Uryumtsev, D. Y., Gultyaeva, V. V, & Zinchenko, M. I. (2021). Cardiorespiratory Coordination in Acute Hypoxia in Runners. Human Physiology, 47(4), 80–90. doi.org/10.1134/S0362119721030087
[22] Meglen, R. R. (1991). Examining large databases: A chemometric approach using principal component analysis. Journal of Chemometrics, 5(3), 163–179. doi.org/10.1002/CEM.1180050305
[23] Molkov, Y., Zoccal, D., Baekey, D., Abdala, A., Machado, B., Dick, T., Paton, J., & Rybak, I. (2014). Physiological and pathophysiological interactions between the respiratory central pattern generator and the sympathetic nervous system. Progress in Brain Research, 121(1), 1–23. doi.org/10.1016/B978-0-444-63488-7.00001-X
[24] Montull, L., Abenza, O., Hristovski, R., & Balagué, N. (2023). Hysteresis Area of Psychobiological Variables. A New Non-Invasive Biomarker of Effort Accumulation? Apunts Educación Física y Deportes, 152, 55–61. doi.org/10.5672/apunts.2014-0983.es.(2023/2).152.06
[25] Montull, L., Vázquez, P., Hristovski, R., & Balagué, N. (2020). Hysteresis behaviour of psychobiological variables during exercise. Psychology of Sport and Exercise, 48(August 2019), 101647. doi.org/10.1016/j.psychsport.2020.101647
[26] Naudts, J. (2005). Boltzmann entropy and the microcanonical ensemble. Europhysics Letters, 69(5), 719–724. doi.org/10.1209/epl/i2004-10413-1
[27] Oviedo, G. R., Garcia-Retortillo, S., Carbó-Carreté, M., Guerra-Balic, M., Balagué, N., Javierre, C., & Guàrdia-Olmos, J. (2021). Cardiorespiratory Coordination During Exercise in Adults With Down Syndrome. Frontiers in Physiology, 12. doi.org/10.3389/FPHYS.2021.704062
[28] Pocock, G., Richards, C. D., & Richards, D. A. (2013). Human Physiology. Springer Science & Business Media.
[29] Qammar, N. W., Orinaitė, U., Šiaučiūnaitė, V., Vainoras, A., Šakalytė, G., & Ragulskis, M. (2022). The Complexity of the Arterial Blood Pressure Regulation during the Stress Test. Diagnostics, 12(5). doi.org/10.3390/diagnostics12051256
[30] Romero, S. A., Minson, C. T., & Halliwill, X. R. (2017). The cardiovascular system after exercise. Journal of Applied Physiology, 122(4), 925–932. doi.org/10.1152/japplphysiol.00802.2016
[31] Seely, A. J. E., & Macklem, P. (2012). Fractal variability: An emergent property of complex dissipative systems. Chaos, 22(1), 19–22. doi.org/10.1063/1.3675622
[32] Tenenbaum, J. B., De Silva, V., & Langford, J. C. (2000). A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science, 290(5500), 2319–2323. doi.org/10.1126/SCIENCE.290.5500.2319
[33] Vázquez, P., Hristovski, R., & Balagué, N. (2016). The path to exhaustion: Time-variability properties of coordinative variables during continuous exercise. Frontiers in Physiology, 7, 37. doi.org/10.3389/fphys.2016.00037
[34] Velicka, D., Kairiukstiene, Z., Poderiene, K., Vainoras, A., & Poderys, J. (2019). Interaction between cardiac functional indices during incremental exercise test reveals the peculiarities of adaptation to exercising. Medicina (Lithuania), 55(7), 1–9. doi.org/10.3390/medicina55070314
[35] Zebrowska, M., Garcia-Retortillo, S., Sikorski, K., Balagué, N., Hristovski, R., Casimiro, J., & Petelczyc, M. (2020). Decreased coupling among respiratory variables with effort accumulation. Europhysics Letters, 132(2), 1–7. doi.org/10.1209/0295-5075/132/28001
ISSN: 2014-0983
Rebut: 26 d'abril de 2024
Acceptat: 17 de juliol de 2024
Publicat: 1 de gener de 2025
Editat per: © Generalitat de Catalunya Departament de la Presidència Institut Nacional d’Educació Física de Catalunya (INEFC)
© Copyright Generalitat de Catalunya (INEFC). Aquest article està disponible a la url https://www.revista-apunts.com/. Aquest treball està publicat sota una llicència Internacional de Creative Commons Reconeixement 4.0. Les imatges o qualsevol altre material de tercers d’aquest article estan incloses a la llicència Creative Commons de l’article, tret que s’indiqui el contrari a la línia de crèdit; si el material no s’inclou sota la llicència Creative Commons, els usuaris hauran d’obtenir el permís del titular de la llicència per reproduir el material. Per veure una còpia d’aquesta llicència, visiteu https://creativecommons.org/licenses/by/4.0/deed.ca